Cormac Flynn		
Department	Mechanical and Industrial Engineering	
Campus	Galway	
Email	Cormac.Flynn@gmit.ie	
Tel	(091) 742379	
Research Interest	My main research interests are in the area of soft tissue mechanics. In particular, I develop instrumentation and computational models to characterise the mechanical behaviour of biological soft tissues. I have a particular interest in characterising human skin. I develop constitutive models that simulate the non-linear, time-dependent, and directional- dependent properties of skin. This work has been applied in several diverse areas including modelling the diabetic foot, develop realistic models of the human face, and measuring the sharpness of surgical scalpels. Other applications include examining skin meshing techniques used in the treatment of burns.	
Publications	 FLYNN, C., 2019. Experimental Characterisation: Rich Deformations. In Skin Biophysics. Editor: Limbert G., Springer, Cham, 215-234. FLYNN, C., TABERNER, A., NIELSEN, P. and FELS, S., 2018. Comparison of anisotropic models to simulate the mechanical response of facial skin. Computer Methods in Biomechanics and Biomedical Engineering, Springer, 43-55. CAPEK, L., FLYNN, C., MOLITOR, CHONG, S., HENYS, P., 2018. Graft orientation influences meshing ratio, Burns, 44(6), pp. 1439-1445 FLYNN C., NAZARI M., FLYNN C., PERRIER P., FELS S, NIELSEN P. AND PAYAN Y., 2017. Computational modelling of the passive and active components of the face. In Biomechanics of Living Organs, Editors: Ohayon, J. and Payan Y., Elsevier USA. KOVAR, M., FLYNN, C., SOBOTKA, J. and CAPEK, L., 2017. Validation of breast implant finite element model. Computer methods in biomechanics and biomedical engineering, 20, 109. FLYNN C. AND RUBIN M.B., 2016. Undesirable anisotropy in a discrete fiber bundle model of fibrous tissues. In Structure-Based Mechanics of Tissues and Organs, Editors: Ghassan S. Kassab and Michael S. Sacks, Springer US, pp. 329-345. FLYNN, C., TABERNER, A., NIELSEN, P. and FELS, S., 2016. Comparison of anisotropic models to simulate the mechanical response of facial skin, 14th International Symposium for Computer Methods in Biomechanics and Biomedical Engineering, Tel Aviv, Israel, 20th-22nd September 2016. FLYNN, C., STAVNESS, I., LLOYD, J. and FELS, S., 2015. A finite element model of the face including an orthotropic skin model under in vivo tension. Computer Methods in Biomechanics and Biomedical Engineering, 18(6), pp. 571-582 FLYNN, C. and RUBIN, M. B., 2014. An anisotropic discrete fiber model with dissipation for soft biological tissues. Mechanics of Materials, 68, pp. 217-227 	

• FLYNN, C., TABERNER, A., NIELSEN, P. and FELS, S., 2014. An anisotropic
viscoelastic model of in vivo facial skin, 9th Australasian Biomechanics
Conference, Wollongong, Australia, 30th Nov-2nd December 2014.
• STAVNESS I., NAZARI M., FLYNN C., PERRIER P., PAYAN Y., LLOYD J. AND
FELS S. 2014. Coupled Biomechanical Modeling of the Face, Jaw, Skull,
Tongue, and Hyoid Bone. In 3D Multiscale Physiological Human, Nadia
Magnenat-Thalmann, Osman Ratib & Hon Fai Choi editors, Chapter 11,
Springer Verlag London, pp. 253-274. DOI : 10.1007/978-1-4471-6275-
9_11
FLYNN, C., 2014. Fiber Matrix Models of the Dermis. In Computational Displaying of the Skin Editory Dermond Overlage. Den Stanford
Biophysics of the Skin, Editors: Bernard Querleux, Pan Stanford, pp.133-160, DOI: 10.4032/9789814463850
 FLYNN, C., TABERNER, A., NIELSEN, P. and FELS, S., 2013. Simulating
the three-dimensional deformation of in vivo facial skin. Journal of the
Mechanical Behavior of Biomedical Materials, 2013, 28, pp. 484-494
• FLYNN, C. and RUBIN, M. B., 2012. An anisotropic discrete fibre model
based on a generalised strain invariant with application to soft
biological tissues. International Journal of Engineering Science, 60, pp.
66-76
• FLYNN, C. and RUBIN, M. B., 2012. An anisotropic discrete fiber model
based on a generalized strain invariant with application to soft
biological tissues, 23rd International Congress of Theoretical and
Applied Mechanics, Beijing, China, 20-24th August 2012.
• GICK, B., CHIU, C., FLYNN, C., STAVNESS, I., FRANCIS, N. AND FELS, S., 2012. Producing whole speech events: Differential facial stiffness
across the labial stops. Proceedings of Acoustics 2012 Hong Kong. The
Hong Kong Institute of Acoustics (HKIOA). Paper 2pSC1, 6pp
 FLYNN, C. and RUBIN, M.B., 2012. An Anisotropic Discrete Fiber Model
Based on a Generalized Strain Invariant with Application to Soft
Biological Tissues, 8th European Solid Mechanics Conference, Graz,
Austria, 9-13th July 2012.
• FLYNN, C. STAVNESS, LLOYD, J., FELS, S., 2012. Finite Element Model of
the Face Including an Orthotropic Skin Model Under In Vivo Tension,
Proceedings of the 18th Congress of the European Society of
Biomechanics, 45:S265.
• FLYNN, C., RUBIN, M.B. and NIELSEN, P., 2011. A model for the anisotropic response of fibrous soft tissues using six discrete fibre
bundles. International Journal for Numerical Methods in Biomedical
Engineering, 27(11), pp. 1793-1811
• FLYNN, C., TABERNER, A. and NIELSEN, P., 2011. Modeling the
Mechanical Response of In Vivo Human Skin Under a Rich Set of
Deformations. Annals of Biomedical Engineering, 39(7), pp. 1935-
1946.
• FLYNN, C., TABERNER, A. and NIELSEN, P., 2011. Measurement of the
force–displacement response of in vivo human skin under a rich set of
deformations. Medical engineering & physics, 33(5), pp. 610-619
• FLYNN, C., TABERNER, A. and NIELSEN, P., 2011. Mechanical
characterisation of in vivo human skin using a 3D force-sensitive micro-
robot and finite element analysis. Biomechanics and Modeling in Mechanobiology, 10(1), pp. 27-38
wechanobiology, 10(1), pp. 27-30

ГГ	
•	FLYNN, C., 2010. Finite element models of wound closure. Journal of
	Tissue Viability, 19(4), pp. 137-149
•	FLYNN, C., RUBIN, M.B. and NIELSEN, P., 2010. A Physically-based
	anisotropic discrete fiber model for fibrous soft tissues, Proceedings of
	the ASME 2010 IMECE, 1:695-703.
•	FLYNN, C., TABERNER, A. and NIELSEN, P., 2010. Characterizing skin
	using a three-axis parallel drive force-sensitive micro-robot, Conf Proc
	IEEE Eng Med Biol Soc., 1:6481-6484.
•	FLYNN, C. and NIELSEN, P., 2009. Mechanical characterization of in vivo
	human skin, Abstracts of the International Meeting of the
	International Society for Biophysics and Imaging of the Skin, Besancon,
	France, 9-12th September 2009, doi: 10.1111/j.1600-
	0846.2010.00453.x.
•	FLYNN, C. and MCCORMACK, B., 2009. Finite Element and Animal
	Studies of Scar Contractions Leading to Chronic Wounds.
	Bioengineering Research of Chronic Wounds. pp. 207-233.
•	FLYNN, C.O. and MCCORMACK, B.A.O., 2009. A three-layer model of
	skin and its application in simulating wrinkling. Computer Methods in
	Biomechanics and Biomedical Engineering, 12(2), pp. 125-134
•	FLYNN, C. and MCCORMACK, B.A.O., 2009. Simulating the wrinkling
	and aging of skin with a multi-layer finite element model. Journal of
	Biomechanics, 43(3), pp. 442-448
•	FLYNN, C. and MCCORMACK, B.A.O., 2008. Finite element modelling of
	forearm skin wrinkling. Skin Research and Technology, 14(3), pp. 261-
	269
•	FLYNN, C. and MCCORMACK, B.A.O., 2008. A simplified model of scar
	contraction. Journal of Biomechanics, 41(7), pp. 1582-1589
•	FLYNN, C. and MCCORMACK, B.A.O., Finite element modelling of
	forearm skin wrinkling, Proceedings of Bioengineering in Ireland 13,
	Enniskillen, Co. Fermanagh, Ireland, 26-28th January 2007, pp 37, 2007
•	FLYNN, C. and MCCORMACK, B.A.O., Simulation of wrinkling with a
	multi-layer model of skin, Proceedings of the 7th International
	Symposium on Computer Methods in Biomechanics and Biomedical
	Engineering, Juan Les Pins, France, 22-25th March, 2006
•	FLYNN, C. and MCCORMACK, B.A.O., The Mechanics of Skin Around
	Contracting Scars, Proceedings of the 7th International Symposium on
	Computer Methods in Biomechanics and Biomedical Engineering, Juan
	Les Pins, France, 22-25th March, 2006
•	FLYNN, C. and MCCORMACK, B.A.O., The mechanics of skin around
	scars, Proceedings of Bioengineering in Ireland 12, Galway, Ireland, 25-
	26th January 2006, pp 75, 2006
	FLYNN, C. and MCCORMACK, B.A.O., A constitutive model for skin and
	its application in finite element analyses, 19th European Conference
	on Biomaterials, Sorrento, Italy, 11-15th September 2005, T95, 2005
	FLYNN, C. and MCCORMACK, B.A.O., An orthotropic-viscoelastic model
	for skin, Proceedings of Bioengineering in Ireland 11, Killiney, Co.
	Dublin, Ireland, 28-29th January 2005, pp 63