

VALIDATION REPORT

1	Title of Drograma a (a):	Higher Cartificate in Automation and Dahatica	
1.	Title of Programme(s):	Higher Certificate in Automation and Robotics	
	(incl. Award Type and	BEng in Automation and Robotics	
	Specify Embedded Exit Awards)		
2.	NFQ Level(s)/	Levels 6, 7	
۷.	No. ECTS:	120/180 ECTS	
3.	Duration:	2/3 years	
4.	ISCED Code:	0714	
5.	School / Centre:	School of Engineering	
6.	Department:	Department of Mechanical and Industrial Engineering	
7.	Type of Review:	Differential Validation	
8.	Date of Review:	10 th May 2022	
9.	Delivery Mode:	Blended	
10.	Panel Members:	Dr Brendan O'Donnell, Niall Morris, Camila D Bastiani, Neasa	
10.	ranei Weinbers.	Flannery, Dr Des Foley	
11.	Proposing Staff:	Carine Gachon	
	Troposing Start.	Aurora Dimache	
		David Gorman	
		Jack Saad	
		Stephen Foy	
		Gabriel Farragher	
		Michael Kelly	
		Niall O'Connor	
		Nireeksha Karode (not sure if she attended)	
12.	Rationale for Changes:	Following a request from industry, the programmes were developed and approved in 2020 as a part-time programme where students complete 60 credits per year. All students in the programme are employed in the manufacturing industry and are released by their employer to attend classes. They undertake 20 credits in each of the two traditional academic semesters and a 20 credits Industry module in a third semester. The experience of delivering the programme since inception has suggested the necessity for some changes. In addition, following feedback from students and the newly appointed internal examiners, a number of issues have been identified such as: • lack of relevance of some topics, duplication, gaps in material, • learning outcomes too ambitious, • sequencing of modules and industry training	
13.	Overview of Changes:	It is proposed to move the module Programming with Python to year 2 and move Programming with C& C++ to year 3. The C& C++ module is more suited to the level 7 as some concepts like object-oriented design, basic algorithm are better introduced if students have already done some programming. Also, moving Python programming in years allows contextualisation of programming as students will program robotic arms.	

		Chair	Secretary				
	Signed:	3101 Dad	Demond Holy				
		Not approved at this time:					
		Approved subject to recommended changes:	X				
16.	FAO: Academic Council:	Approved:	V				
		SDG Goals need to brought out more i	n the document				
		level of content and expectation being	placed on student				
		Topics are excellent but programme bo					
		Recommendations of the panel in rela-	tion to award sought:				
		No conditions					
		Special conditions attaching to approve	al (if any):				
		this review	and timely approach to				
		The team is commended for its proac	tive and timely approach to				
		recommendation(s): Commendations:					
		listed below and subject to the following	ng condition(s) and				
	Recommendations:	The panel approve the proposed chang					
15.	Findings and	General:					
14.	Resource Implications:	No additional resources are required.					
		Changes outlined in full in Appendix A.					
		training needs adapted.					
		trainings, projects, and academic mortraining needs adapted.	dules was analysed and the				
		the training, in collaboration with the trainer. The flow be					
		module were reviewed by the Automa	tion lecturers, who attended				
		year 2 and 3 respectively. Also, the trai	ning included in the Industry				
		integration with the Project Managem					
		experience of the delivery has high structure in the delivery of the techn	_				
		has been given to the review of	•				
		was reviewed for sequencing, overlap	and gaps. Special attention				
		For the purpose of this review, the strands and the modules mapped to ea	. •				
		they will learn now to control them in	semester 2.				
		to semester 1 so students will learn a they will learn how to control them in					
	Mechanical Systems where motors are introduced is be to semester 1 so students will learn about motors first						

Appendix A

Appe ndix AStra nd	Mathematics	Instrumentati on	Mechanical Design of an automated cell	PLC	Robotics	Analog Control (Temperature and Motion)	Programming	System Integration	Transversal skills
1	Mathematics Fundamental s	Electrical Principles and Automation Industry Module 1	CAD Engineering Science Electrical Principles and Automation	Electrical Principles and Automation Industry module 1	Industry module 1				LIS Industry Module 1
2	Mathematics 2	Instrumentati on & Control Industry module 2	Automation 2	Automation 2 Industry Module 2	Programming with Python	Instrumentati on & Control	Programming with Python (Previously in year3)	Networking Technology	Regulatory Affairs Project Management Industry Module 2
3	Six Sigma Green Belt Quality	Industry module 3	Mechanical systems	Industry Module 3	Industrial Robotics (previously)	Control Systems	Programming with C & C++	Internet of Things Project	Six Sigma Green Belt Quality

Industry module 3	Automation 3)	Industry module 3	(Previously in year 2)	Industry Module 3
	Industry module 3			

Mathematics strand

Stage	Module name	Current Learning Outcomes mapping to this strand	Proposed Changes
1	Mathematics	1. Perform simple arithmetic operations.	No change
	Fundamentals	2. Work with mathematical formula and functions.	
		3. Draw graphs of standard functions and interpret	
		graphs.	
		4. Work with trigonometric, logarithmic, and	
		exponential functions in solving problems.	
		5. Perform simple differentiation.	
		6. Perform calculations involving complex numbers	
		in Cartesian and polar form.	
		7. Work with vectors and matrices.	
		8. Work with data and perform simple statistical	
		analyses.	
2	Mathematics 2	1. Differentiate single variable functions requiring a	No change
		combination of rules.	
		2. Determine the partial derivatives of functions of	
		two variables.	
		3. Apply differentiation to solve rates of change and	
		1ecognize1on problems.	
		4. Select and apply appropriate techniques of	
		integration to evaluate integrals.	

	1		
		5. Solve first order differential equations by direct	
		integration and separation of variables.	
		6. Analyse the behaviour of systems and processes	
		in engineering to 2ecognize when differential	
		equations are appropriate, formulate the problem,	
		creatively model these behaviours in order to solve	
		the problems, interpret and clearly communicate the	
		results.	
		7. Apply the rules of probability and use probability	
		models for data analysis.	
3	Six sigma Grenn Belt	1. Explain the Define, Measure, Analyse, Improve	The module learning outcomes were changed to
3	Quality Quality	and Control steps in Six Sigma. Describe lean	align with Professional Accreditation
	Quanty	engineering and the origins of Six sigma.	requirements, and the syllabus of the module has
	Name shaped to Civ		1 -
	Name changed to Six	2. Use 'Define' phase tools to decide on the process	been stream-lined to adapt to the requirements of
	Sigma Quality as the	improvement of a Six Sigma project	the programme.
	Green Belt certification	3. Determine the current performance using a variety	The TLA and Assessment strategy were reviewed
	is not included.	of 'Measure' tools	to reflect the way the module is delivered.
		4. Use the 'Analyse' tools, including inferential	
		statistics to determine the issues to be addressed.	
		5. Use the 'Improve' tools, to experiment and assess	
		the process optimisation.	
		6. 'Control' the process to verify the variances are	
		corrected, select appropriate statistical process	
		control (SPC) techniques.	

Instrumentation strand

Stage	Module name	Current Learning Outcomes mapping to this strand	Proposed Changes
1	Electrical Principles	1. Analyse basic circuits using the fundamental laws	3. Illustrate and discuss the technology and use of
	and Automation	of electrical science.	common actuators.
		2. Describe the technology and use of common	6. Specify, select, build, program and troubleshoot
		electrical and electronic components.	basic PLC circuits.
		3. Illustrate and discuss the technology and use of	
		common sensors and actuators.	Rationale:
		5. Apply basic safety principles	The PB decided to introduce PLC from first year
		6. Specify, select, build and troubleshoot basic	as it is the principal controller used in industry.
		electrical/instrumentation circuits using	Students will learn the electrical and electronic
		microcontrollers.	background required to understand the sensor
			technology. They will use sensors in their PLC
		LO4 relates to the Mechanical Design Strand	circuits, but the detailed study of sensors and
			sensor technology will be covered in year 2.
			The syllabus was updated to reflect the LO
			changes.
1	Industry module 1	5. Undertake a basic technical project demonstrating	There is no change to the LO, but the brief of the
		a skill acquired in their training.	project was expanded on to make sure that students
			use inputs (sensors). In first year, the equipment
		Other LOs relate to the Transversal skills and	will be supplied by GMIT to add consistency into
		robotics strands.	the projects.
			New text added
			The scope of this project will be limited to a single
			operation. The output will be the production of an
			artefact that the student will demonstrate to their
			industry mentor and academic supervisor. The
			project should include a PLC and a minimum of 4
			inputs and outputs. Students should have a 2D

			CAD wiring diagram, a 3D model of their design. A minimum of one fixture should be 3D printed.
2	Instrumentation and Control	 Explain the mode of operation of key sensors and transducers and implement appropriate calibration and signal conditioning. Measure, record and analyse data with a range of sensors and transducers. Interpret instrument specifications correctly, verify that instruments are operated safely and within specifications. Choose the optimum sensor and /or instruments for specific applications and make sensible decisions on the purchase of suitable scientific equipment to meet requirements. Four other LOs relate to Control Systems	No change to the Instrumentation LO, the 3 of the 4 other LOs in the original module were removed as they were far too ambitious for a 5 credits module and were more specific to Control Systems. This module will introduce the overall concept of control systems but will concentrate on the instrumentation side. (See control system strand for more details)
2	Industry module 2	Program and troubleshoot a PLC, integrating inputs and outputs. Other LOs relate to the Transversal skills strand.	 4. Program and troubleshoot a PLC, integrating inputs and outputs. Second LO added: 5. Design and build an automated rig for a basic operation, including safety features The brief of the project was expanded on to give a better structure to the delivery of the project and
			increase consistency between projects. New text: Students will have to draw up the project specification by the end of week 4 of semester 2, to be agreed with their academic supervisor and their industry mentor by week 6, The bill of material

			should then be submitted by week 8 of semester 2. The student is expected to be ready to start the project as early as possible into the Industry Block. The scope of this project will be to demonstrate their knowledge of designing, building and programming an automated system that includes a minimum of 8 inputs and 8 outputs. An HMI and element of networking must also be included. Safety features must be present in the project. The output will be the production of an artefact that the student will demonstrate to their industry mentor and academic supervisor. Students should have a 2D CAD wiring diagram of an input card and a 3D CAD model of a minimum of one component of their project
3	Industry module 3	 Design an automated cell integrating a robotic arm, PLC control, vision systems and safety features This LO is covering Instrumentation, PLC, Robotics, Mechanical Systems and Control Systems strands. Other LOs relate to the Transferrable skills strand. 	1. Design an automated cell integrating hardware such as robotic arm, PLC controller, drive or vision systems as well as safety features. Drive was added to reflect the content of the Control System module. The Description of the project was expanded on to give more structure to the delivery and increase consistency. New text: Students will have to draw up the project specification by the end of week 4 of semester 2, to be agreed with their academic supervisor and their industry mentor by week 6, The bill of material should then be submitted by week 8 of semester 2. The student is expected to be ready to start the project as early as possible into the Industry Block.

	The output of the project will be the design of an
	automated cell that will comply with industry
	standards and safety regulations. The cell should
	integrate a minimum of three hardware element
	(PLC, Robotic arm, drive, I/O link and/or vision
	system), demonstrate the manipulation of data of a
	minimum of two process variables as well as
	visualisation on HMI. In the programming of the
	PLC, students should demonstrate ability to use
	more than one programming language (Ladder,
	SFC, structure text, etc).
	The technical project is also integrated with the Six
	Sigma module and the DMAIC project. In the
	assessment strategy more weight is given to the
	technical project, as some of the DMAIC project is
	assessed in the Six Sigma module.

Mechanical Design of an Automated Cell strand

Stage	Module name	Current Learning Outcomes mapping to this strand	Proposed Changes
1	CAD	1. Use three dimensional solid modeling software	No change
		(CREO 3.0) in the design of engineering	
		components.	
		2. Apply engineering graphics standards.	
		3. Use various technical commands and be able to	
		select the appropriate methodology (design intent)	
		required for the creation of a solid model.	
		4. Create drawing files displaying orthographic	
		layouts from the solid model as well as dimensioning	
		and applying dimensional and geographic tolerances	
		to the drawing file.	
		5. Select and use the optimum software techniques to	
		create parts and assemblies models.	
		6. Use standards parts libraries for the selection of	
		appropriate standard components in the design / assembly process. Teaching and Learning Strategies	
		assembly process. Teaching and Learning Strategies	
		All Los in this strand	
	Engineering Science	1. Identify the physical principles relevant to	No change to the learning outcomes
		specified problems.	
		2. Solve theoretical and practical problems.	Assessment breakdown
		3. Work on optical, mechanical, and thermodynamic	
		experiments using best laboratory practices.	
		4. Select appropriate instrument(s) for specific	
		tests/measurements.	
		5. Identify anomalous results and make decisions	
		regarding the source of the anomaly.	

		 6. Record results in compliance with standard practice including measurement uncertainties. 7. Conduct experiments in accordance with safe practice. 8. Independently read instructions and accurately follow a pre-determined methodology. All Los in this strand 	
	Electrical Principles and Automation	4. Explain the basic principles of electrical power generation.All other Los in the Instrumentation and PLC strands	No change
2	Automations 2	 Demonstrate competence in standards used in schematic symbols and drawing layouts Construct schematic diagrams for basic industrial automated applications using the correct standards in pneumatic, hydraulic, electrical, electro-pneumatics, electro-hydraulics areas Simulate circuits to verify operation. Analyse circuit design for faults and errors Optimise circuit design Other LO's in the PLC strand. 	1. Demonstrate competence in standards used in automation, including machine building standards 2. Construct schematic diagrams for basic industrial automated applications using the correct standards in pneumatic, electrical, electropneumatics areas 3. Analyse and 8ptimize circuit design using simulation. The reference to Machine Building Standard was added in LO 1following feedback from Industry. LO 3, 4 and 5 were consolidated into 1.
3	Mechanical Systems	Describe the industrial uses, feasibility and cost effectiveness of types of mechanical systems Examine motors to show the construction, operation and applications of each Illustrate and discuss mechanical systems components technology and anatomy	Los to 2 to 4 were reworded to better reflect the Industry need. 5 and 6 were removed as these LO are already covered in other modules. 2. Select the components of a mechanical system for different automated applications 3. Define actuators' specifications for different applications.

	4. Inspect drive systems to show the construction,	4. Define conveyors' specifications for different
	operation and applications of each	applications.
	5. Analyse sensors to show the applications of each	
	6. Integrate sensors/actuators	
Industry module 3	1.Design an automated cell integrating hardware such as robotic arm, PLC controller, drive or vision systems as well as safety features.	1. Design an automated cell integrating hardware such as robotic arm, PLC controller, drive or vision systems as well as safety features.
	This LO is covering Instrumentation, PLC, Robotics, Mechanical Systems and Control Systems strands. Other LO's in the Transversal skills strand.	As the DMAIC project is being integrated with the Six Sigma module and the technical project, the breakdown of marks was changed to increase the weighting of the technical project.
		weighting of the technical project

PLC strand

Stage	Module name	Current Learning Outcomes mapping to this strand	Proposed Changes
1	Electrical Principles and Automation	6. Specify, select, build and troubleshoot basic electrical/instrumentation circuits using microcontrollers.	6. Specify, select, build, program and troubleshoot basic PLC circuits.
			See Instrumentation strand for rationale
	Industry module 1	 3. Wire and troubleshoot a Programmable Logic Controller using best practice. 5. Undertake a basic technical project demonstrating a skill acquired in their training. LO 5 already featured in Instrumentation Other LOs relate to the Transversal skills and Robotics strands. 	There is no change to the LOs apart for the word "training" being replaced by the word "Programme" The brief of the project was expanded as described in the Instrumentation strand. The PLC training included originally included was moved to year 2 to better integrate with the advanced PLC module (Automation 2). The intro to PLC is now covered in Electrical principles and automation.
2	Automation 2	 6. Describe the industrial uses, feasibility and advantages/disadvantages of a PLC. 7. Describe PLC technology using the correct terminology 8. Construct ladder logic programmes using Boolean Logic, IOs, timers, counters, sequencing 	4. Describe the industrial uses, feasibility and advantages/disadvantages of a PLC 5. Describe PLC technology using the correct terminology 6. Construct ladder logic programmes using Boolean Logic, IOs, timers, counters, sequencing, and advanced functions. Advanced functions were added to the last LO. As better integration of the OEM trainings and academic modules is allowing for more advanced features to be included.
	Industry module 2	4. Program and troubleshoot a PLC, integrating inputs and outputs.	4. Program and troubleshoot a PLC, integrating inputs and outputs.

		This LO already featured in Instrumentation Other LOs relate to the Transversal skills strand	Second LO added: 5. Design and build an automated rig for a basic operation, including safety features The brief of the project was expanded on to give a better structure to the delivery of the project and increase consistency between projects. See instrumentation strand for more details.
3	Industry module 3	1. Design an automated cell integrating a robotic arm, PLC control, vision systems and safety features This LO is covering Instrumentation, PLC, Robotics, Mechanical Systems and Control Systems strands. Other LOs relate to the Transferrable skills strand.	Design an automated cell integrating hardware such as robotic arm, PLC controller, drive or vision systems as well as safety features. Drive was added to reflect the content of the Control System module. The Description of the project was expanded on to give more structure to the delivery and increase consistency. See details in Instrumentation strand.

Robotics strand

Stage	Module name	Current Learning Outcomes mapping to this strand	Proposed Changes
1	Industry module 1	2. Operate a robotic arm in a safe manner.	2. Program and operate a robotic arm in a safe
			manner.
		Other LOs relate to the PLC, Instrumentation and	
		Transversal skills strands	The Robotics training was originally divided
			between the three years and some of it was
			duplication from Automation 3. Students will
			complete all of the trainings on one type of robotic
			arm in year 1 and they will do a more advanced dedicated module in year 3 that will be based on a
			different brand of robotic arm and will also include
			the 3 D model and simulation.
2	Programming with	1. Develop Python code, incorporating fundamental	Develop Python code, incorporating
	Python	programming principles and techniques.	fundamental programming principles and
			techniques, for robotic technology.
	(this module was		
	originally in year 3 and		Taking into consideration the feedback from
	now moved to year 2)		students, the team decided to give more context
			to the programming module by using python to
			program robotic arms
3	Automation 3	3. 3D modelling of cell design. Complete automation	4. Program and troubleshoot a PLC, integrating
	This module is being	of cell and equipment used including valves, sensors,	inputs and outputs.
	renamed Industrial	actuators, motors, robots etc.	
	Robotics to highlight	4. Report the industrial uses, feasibility and cost	Second LO added:
	the focus of the module	effectiveness of robotic systems.	5. Design and build an automated rig for a basic
	and to offer it as a stand-alone module.	5. Illustrate and discuss robotics technology and	operation, including safety features
	stand-alone module.	anatomy	

		 6. Develop and simulate advanced robotic program using inputs and outputs 7. Describe the industrial uses of vision systems. 8. Integrate robotics/ vision systems with additional sensors/actuators 	The brief of the project was expanded on to give a better structure to the delivery of the project and increase consistency between projects. See instrumentation strand for more details.
3	Industry module 3	1. Design an automated cell integrating a robotic arm, PLC control, vision systems and safety features This LO is covering Instrumentation, PLC, Robotics, Mechanical Systems and Control Systems strands. Other LOs relate to the Transferrable skills strand.	Design an automated cell integrating hardware such as robotic arm, PLC controller, drive or vision systems as well as safety features. Drive was added to reflect the content of the Control System module.
		Other Los relate to the Transferrable skins strand.	The Description of the project was expanded on to give more structure to the delivery and increase consistency. See details in Instrumentation strand.

Analog Control strand

Stage	Module name	Current Learning Outcomes mapping to this strand	Proposed Changes
2	Instrumentation and		
	Control	5. Explain the differences in performance between	1. Explain the differences in performance between
		open- and closed-loop control systems and explain	open- and closed-loop control systems and explain
		the principles involved in such systems.	the principles involved in such systems.
		6. Describe the function of a process controller and	
		the use of proportional, derivative and integral	
		control laws. Explain PID control and how such a	Tthe 3 other LOs in the original module were
		controller can be tuned.	removed as they were far too ambitious for a 5
		7. Define the term transfer function and explain how	credits module and were more specific to Control
		it is used to relate outputs to inputs for systems.	Systems. This module will introduce the overall
		8. Model dynamic systems by means of differential	concept of control systems but will concentrate on the instrumentation side.
		equations. Characterise the response of first-order systems to inputs.	the instrumentation side.
		systems to inputs.	
		Three other LOs relate to Instrumentation	
3	Control Systems	1. Explain the differences in performance between	1. Explain the principles involved in different
		different types of control systems and explain the	control systems and their differences in
		principles involved in such systems.	performance and applications
		2. Give reasons for the implementation of P, PI or	2. Select the appropriate control strategy for a
		PID control. Assess the effect of dead time on the	given application in process and motion control
		behaviour of a control system. Examine the uses of	3. Specify the components for open loop and
		cascade control and feedforward control.	closed loop control for industrial use cases
		3. Model 2nd-order physical systems using	4. Develop process and motion control systems for
		differential equations	industrial use cases
		4. Represent 2nd-order system responses using	
		Laplace Transform method.	9 learning outcomes for a 5 credit module was far
		5. Design closed-loop feedback systems.	too ambitious. Also the focus of the programme is

		 6. Analyse closed-loop control systems in terms of stability performance. 7. Specify system performance in terms of time-domain and frequency-domain response. 8. Analyse control systems in terms of steady-state error. 9. Design, set up, operate and analyse complex control systems. Set up and operate robotic systems. Model control system behaviour using suitable metho 	on Automation and the use of control systems in a manufacturing industry setting. Control systems concepts will be introduced in the context of their use in automation, specifically for temperature and motion control.
3	Industry module 3	1. Design an automated cell integrating a robotic arm, PLC control, vision systems and safety features This LO is covering Instrumentation, PLC, Robotics, Mechanical Systems and Control Systems strands. Other LOs relate to the Transferrable skills strand.	Design an automated cell integrating hardware such as robotic arm, PLC controller, drive or vision systems as well as safety features. Drive was added to reflect the content of the Control System module. The Description of the project was expanded on to give more structure to the delivery and increase consistency. See details in Instrumentation strand.

Programming strand

Programming is covered in the PLC and Robotics strands as students learn to programme hardware. This strand relates to more generic programming languages.

Stage	Module name	Current Learning Outcomes mapping to this strand	Proposed Changes
2	Programming with	1. Develop Python code, incorporating fundamental	1. Develop Python code, incorporating
	Python	programming principles and techniques.	fundamental programming principles and
		2. Select, use and test a range of standard Python	techniques, for robotic technology.
	(this module was	language features and common libraries, using	2. Select, use and test a range of standard Python
	originally in year 3 and	professional development tools.	language features and common libraries, using
	now moved to year 2.	3. Apply software engineering principles in Python.	professional development tools.
	Python is a higher level	4. Design and debug code to address unforeseen	3. Apply software engineering principles in
	language so easier to	tasks.	Python.
	introduce first. Also,	5. Select and use Python modules in data analysis	4. Design and debug code to address unforeseen
	this allows for the	applications.	tasks.
	programming of robotic	6. Display an appreciation of good programming	5. Display an appreciation of good programming
	arms.	practice, style and ethics.	practice, style and ethics.
			LO 5 was removed as too ambitious for a level 6.
			The topic is covered in year 3 in the IoT Project
			module
			The assessment strategy was removed to better
			scaffold students' learning.
3	Programming with	1. Develop and debug basic programs incorporating	No change to the LO as they were too ambitious
	C&C++	fundamental programming principles and techniques.	for a level6.
	(originally in year 2,	2. Select, use and test modern C & C++ core	
	moved to year 3)	language and standard library features, using	The assessment strategy was modified to better
	Some of the LOs are	professional software and hardware development	scaffold students' learning.
	better suited to a Level	tools.	

7, in particular if	3. Apply basic algorithm design and documentation	
students have already	techniques.	
experience of	4. Design & debug code to address unforeseen tasks.	
programming.	5. Display an appreciation of good programming practice, style and ethics.	
	6. Describe applications and principles of C & C++.	

Data integration strand

Stage	Module name	Current Learning Outcomes mapping to this strand	Proposed Changes
2	Networking	1. Discuss current network technologies, applications	No change
	Technology	and emerging trends for industrial and business	-
		applications.	
		2. Describe the Internet protocol suite (TCP/IP).	
		3. Recognise and analyse Ethernet, Industrial	
		Ethernet and wireless network architectures, devices	
		and data.	
		4. Select, configure and problem-solve networking	
		elements in a practical application.	
		5. Design, build and test a basic network in a	
		practical application.	
		6. Appreciate network management principles and	
		challenges.	
3	Internet of Things	1. Research an IoT based application area and create	LO8 was changed to include data capture, data
	project	a project proposal, following general requirements.	storage and a data analytics which was removed
		2. Discuss a selected IoT application area, including	from the Python programming module.
		industry, trends, technologies, ethics.	
		3. Investigate & select suitable hardware and/or	8. Demonstrate project technical functionality,
		software elements to use in a project, following	including data capture, data storage and data
		general guidelines.	analytics.
		4. Develop, integrate, build and test hardware and/or	
		software elements of a project, on a specified Internet	Two assessments have been combined to reduce
		of Things development platform.	the workload.
		5. Apply problem solving techniques to technical and	
		other issues that arise in the context of a project.	
		6. Manage project deliverables throughout the project	
		timeline in an agile environment.	

7. Contribute towards a collaborative working	
environment, as well as work independently towards	
project goals.	
8. Demonstrate project technical functionality, and	
understanding of technical and mathematical	
concepts and implementations incorporated.	
9. Communicate project ideas, design and	
deliverables, using professional tools and guidelines.	

Transversal skills

Stage	Module name	Current Learning Outcomes mapping to this strand	Proposed Changes
1	Learning Innovation Skills	1. Apply the basic principles of critical thinking/problem solving to engineering systems 2. Demonstrate an enhanced capacity to communicate verbally in contexts relevant to an engineering environment 3. Explain the ethical standards required of the professional engineer 4. Demonstrate an ability to communicate via electronic media to the standards of the engineering industry 5. Appraise, select, and apply appropriate learning strategies	No change
	Industry module 1	 Comply with company's procedures and policies, and describe the company's ethical guidelines relating to the workplace, customers and the environment. Describe and explain manufacturing processes available in the work place. Integrate in the company work place, communicating and contributing as an individual and team member, and describe the company's organisational structure. Reflect on their experiential learning. LOs 2,3 and 5 relates to the PLC and Robotics strands 	No change to these LOS
2	Project Management	1. Apply the principles and methodologies of project management to their specialist discipline.	No change to this module.

	2. Apply project management techniques and systems in their specialist discipline.	
	3. Recognise the complexities of team based	
	management.	
	4. Structure project or job tasks, schedule and	
	manage.	
	5. Apply engineering and project management	
	techniques to real problems in industry or laboratory	
	settings	
	6. Combine various aspects of the course in a	
	practical context through preparing and delivering	
	presentations / reports on the specification / scope,	
	planning and implementing of a project	
Industry module 2	1. Select the appropriate tools, methodologies and	No change to these LO. Two other Los relate to the
	techniques to solve manufacturing problems, and	technical project, specifically the Instrumentation
	design and implement solutions.	and PLC.
	3. Communicate findings to teams and management,	
	and work effectively as a team member.	
	4. Describe and communicate how the regulatory	
	constraints affect the operations of the company, and	
	how ethical considerations affect their conduct as a	
	technician.	
	6. Reflect on their experiential learning, and their	
	ability to solve problems using a structured technical	
	approach, and identify gaps.	
Six sigma Grenn Belt	1. Explain the Define, Measure, Analyse, Improve	The module learning outcomes were changed to
Quality	and Control steps in Six Sigma. Describe lean	align with Professional Accreditation
	engineering and the origins of Six sigma.	requirements, and the syllabus of the module has
Name changed to Six	2. Use 'Define' phase tools to decide on the process	been stream-lined to adapt to the requirements of
Sigma Quality as the	improvement of a Six Sigma project	the programme.
Green Belt certification	3. Determine the current performance using a variety	The TLA and Assessment strategy were reviewed
is not included.	of 'Measure' tools	to reflect the way the module is delivered.

4. Use the 'Analyse' tools, including inferential	
statistics to determine the issues to be addressed.	
5. Use the 'Improve' tools, to experiment and assess	
the process optimisation.	
6. 'Control' the process to verify the variances are	
corrected, select appropriate statistical process	
control (SPC) techniques.	